Huffman.PBTree

(* This program is free software; you can redistribute it and/or      *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1   *)
(* of the License, or (at your option) any later version.             *)
(*                                                                    *)
(* This program is distributed in the hope that it will be useful,    *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of     *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the      *)
(* GNU Lesser General Public License for more details.                *)
(*                                                                    *)
(* You should have received a copy of the GNU Lesser General Public   *)
(* License along with this program; if not, write to the Free         *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA                                                     *)

(**********************************************************************
    Proof of Huffman algorithm: PBTree.v                             
                                                                     
    Definition of partial binary trees (nodes have upto 2 sons)      
                                                                     
    Definitions:                                                     
        pbtree, inpb, pbfree, compute_pbcode, pbadd                  
        pbbuild, all_pbleaves, distinct_pbleaves, compute_pbcode     
                                                                     
                                    Laurent.Thery@inria.fr (2003)    
 **********************************************************************)


Require Import List.
From Huffman Require Import Aux.
From Huffman Require Import Code.
From Huffman Require Import Build.
From Huffman Require Import ISort.
Require Import Compare_dec.
From Huffman Require Import Permutation.
From Huffman Require Import UniqueKey.
From Huffman Require Import sTactic.

Section PBTree.
Variable A : Type.
Variable empty : A.
Variable eqA_dec : forall a b : A, {a = b} + {a <> b}.

(* Partial Binary Tree (no more than 2 sons *)
Inductive pbtree : Type :=
  | pbleaf : A -> pbtree
  | pbleft : pbtree -> pbtree
  | pbright : pbtree -> pbtree
  | pbnode : pbtree -> pbtree -> pbtree.

(* Predictate for belonging *)
Theorem pbleaf_or_not :
 forall p, (exists a : _, p = pbleaf a) \/ (forall a : A, p <> pbleaf a).
Proof using.
intros p; case p; simpl in |- *;
 try (intros; right; red in |- *; intros; discriminate).
intros a; left; exists a; simpl in |- *; auto.
Qed.

(* Predicate for belonging *)
Inductive inpb : pbtree -> pbtree -> Prop :=
  | inpb_leaf : forall t : pbtree, inpb t t
  | inpb_left : forall t t1 t2 : pbtree, inpb t t1 -> inpb t (pbleft t1)
  | inpb_right : forall t t1 t2 : pbtree, inpb t t1 -> inpb t (pbright t1)
  | inpb_node_l : forall t t1 t2 : pbtree, inpb t t1 -> inpb t (pbnode t1 t2)
  | inpb_node_r : forall t t1 t2 : pbtree, inpb t t2 -> inpb t (pbnode t1 t2).
Hint Constructors inpb : core.

(* Equality on partial trees is decidable *)
Definition pbtree_dec : forall a b : pbtree, {a = b} + {a <> b}.
intros a; elim a; simpl in |- *; auto.
intros a0 b; case b; try (intros; right; red in |- *; intros; discriminate).
intros a1; case (eqA_dec a0 a1); intros H1.
left; rewrite H1; auto.
right; red in |- *; Contradict H1; inversion H1; auto.
intros p H b; case b; try (intros; right; red in |- *; intros; discriminate).
intros p1; case (H p1).
intros e; rewrite e; auto.
intros H1; right; Contradict H1; inversion H1; auto.
intros p H b; case b; try (intros; right; red in |- *; intros; discriminate).
intros p1; case (H p1).
intros e; rewrite e; auto.
intros H1; right; Contradict H1; inversion H1; auto.
intros p H p0 H0 b; case b;
 try (intros; right; red in |- *; intros; discriminate).
intros p1 p2; case (H p1); intros H1.
case (H0 p2); intros H2.
left; rewrite H1; rewrite H2; auto.
right; Contradict H2; injection H2; auto.
right; Contradict H1; injection H1; auto.
Defined.

(* Belonging is decidable *)
Definition inpb_dec : forall a b, {inpb a b} + {~ inpb a b}.
intros a b; elim b.
intros a0; case a;
 try (intros; right; red in |- *; intros HH; inversion HH; auto; fail).
intros a1; case (eqA_dec a1 a0); intros HH.
left; rewrite HH; auto.
right; Contradict HH; inversion HH; auto.
intros p Hp; case Hp; auto; intros HH.
case (pbtree_dec a (pbleft p)); intros HH1.
left; rewrite HH1; auto.
right; red in |- *; intros HH2; generalize HH HH1; inversion HH2; auto.
intros p Hp; case Hp; auto; intros HH.
case (pbtree_dec a (pbright p)); intros HH1.
left; rewrite HH1; auto.
right; red in |- *; intros HH2; generalize HH HH1; inversion HH2; auto.
intros p H p0 H0.
case H; auto; intros H1.
case H0; auto; intros H2.
case (pbtree_dec a (pbnode p p0)); intros HH1.
left; rewrite HH1; auto.
right; red in |- *; intros HH2; generalize H1 H2 HH1; inversion HH2; auto.
Defined.

(* inpb is transitive *)
Theorem inpb_trans : forall t1 t2 t3, inpb t1 t2 -> inpb t2 t3 -> inpb t1 t3.
Proof using.
intros t1 t2 t3 H H1; generalize t1 H; elim H1; clear H H1 t1 t2 t3; auto.
Qed.

(* A partial tree has always a leaf *)
Theorem inpb_ex : forall t : pbtree, exists x : _, inpb (pbleaf x) t.
Proof using.
intros t; elim t; simpl in |- *; auto.
intros a; exists a; auto.
intros b (a, H); exists a; auto.
intros b (a, H); exists a; auto.
intros b (a, H) b0 H0; exists a; auto.
Qed.

(* Predicate for Partial Trees with Different Leaves *)
Definition distinct_pbleaves (t : pbtree) : Prop :=
  forall t0 t1 t2 : pbtree,
  inpb (pbnode t1 t2) t -> inpb t0 t1 -> inpb t0 t2 -> False.

(* A leaf tree has distinct leaves *)
Theorem distinct_pbleaves_Leaf : forall a : A, distinct_pbleaves (pbleaf a).
Proof using.
intros a; red in |- *.
intros a0 t1 t2 H; inversion H.
Qed.
Hint Resolve distinct_pbleaves_Leaf : core.

(* Direct subtrees of a tree with distinct leaves have distinct leaves *)
Theorem distinct_pbleaves_l :
 forall t1 t2 : pbtree,
 distinct_pbleaves (pbnode t1 t2) -> distinct_pbleaves t1.
Proof using.
intros t1 t2 H; red in |- *.
intros a t0 t3 H0 H1 H2.
apply (H a t0 t3); auto.
Qed.

(* Direct subtrees of a tree with distinct leaves have distinct leaves *)
Theorem distinct_pbleaves_r :
 forall t1 t2 : pbtree,
 distinct_pbleaves (pbnode t1 t2) -> distinct_pbleaves t2.
Proof using.
intros t1 t2 H; red in |- *.
intros a t0 t3 H0 H1 H2.
apply (H a t0 t3); auto.
Qed.

(* Direct subtrees of a tree with distinct leaves have distinct leaves *)
Theorem distinct_pbleaves_pl :
 forall t1 : pbtree, distinct_pbleaves (pbleft t1) -> distinct_pbleaves t1.
Proof using.
intros t1 H; red in |- *.
intros a t0 t3 H0 H1 H2.
apply (H a t0 t3); auto.
Qed.

(* Direct subtrees of a tree with distinct leaves have distinct leaves *)
Theorem distinct_pbleaves_pr :
 forall t1 : pbtree, distinct_pbleaves (pbright t1) -> distinct_pbleaves t1.
Proof using.
intros t1 H; red in |- *.
intros a t0 t3 H0 H1 H2.
apply (H a t0 t3); auto.
Qed.

(* A leaf have distinct leaves *)
Theorem distinct_pbleaves_pbleaf : forall a : A, distinct_pbleaves (pbleaf a).
Proof using.
intros a; red in |- *.
intros a0 t1 t2 H; inversion H.
Qed.
Hint Resolve distinct_pbleaves_pbleaf : core.

(* A left has distinct leaves if its subtree has it *)
Theorem distinct_pbleaves_pbleft :
 forall t, distinct_pbleaves t -> distinct_pbleaves (pbleft t).
Proof using.
intros t H; red in |- *.
intros a t1 t2 H0 H1 H2; apply (H a t1 t2); auto.
inversion H0; auto.
Qed.

(* A right has distinct leaves if its subtree has it *)
Theorem distinct_pbleaves_pbright :
 forall t, distinct_pbleaves t -> distinct_pbleaves (pbright t).
Proof using.
intros t H; red in |- *.
intros a t1 t2 H0 H1 H2; apply (H a t1 t2); auto.
inversion H0; auto.
Qed.
Hint Resolve distinct_pbleaves_pbleft distinct_pbleaves_pbright : core.

(* Transform a tree in a code *)
Fixpoint compute_pbcode (a : pbtree) : code A :=
  match a with
  | pbleaf b => (b, nil) :: nil
  | pbleft l1 =>
      map
        (fun v : A * list bool =>
         match v with
         | (a1, b1) => (a1, false :: b1)
         end) (compute_pbcode l1)
  | pbright l1 =>
      map
        (fun v : A * list bool =>
         match v with
         | (a1, b1) => (a1, true :: b1)
         end) (compute_pbcode l1)
  | pbnode l1 l2 =>
      map
        (fun v : A * list bool =>
         match v with
         | (a1, b1) => (a1, false :: b1)
         end) (compute_pbcode l1) ++
      map
        (fun v : A * list bool =>
         match v with
         | (a1, b1) => (a1, true :: b1)
         end) (compute_pbcode l2)
  end.

(* Computed code are not empty *)
Theorem compute_pbcode_not_null : forall p, compute_pbcode p <> nil.
Proof using.
intros p; elim p; simpl in |- *; auto;
 try (intros p0; case (compute_pbcode p0); simpl in |- *; auto);
 intros; red in |- *; intros HH1; discriminate.
Qed.
Hint Resolve compute_pbcode_not_null : core.

(* Keys in the computed code are leaves of the tree *)
Theorem in_pbcompute_inpb :
 forall (t : pbtree) (a : A) (l : list bool),
 In (a, l) (compute_pbcode t) -> inpb (pbleaf a) t.
Proof using.
intros t; elim t; simpl in |- *; auto.
intros a a0 l [H1| H1]; try (case H1; fail).
injection H1; intros H2 H3; rewrite H3; auto.
intros p H a l H0; apply inpb_left; auto.
case (in_map_inv _ _ _ _ _ H0).
intros (a1, l1) (Ha1, Hl1); apply (H a l1); auto.
injection Hl1; intros HH1 HH2; rewrite HH2; auto.
intros p H a l H0; apply inpb_right; auto.
case (in_map_inv _ _ _ _ _ H0).
intros (a1, l1) (Ha1, Hl1); apply (H a l1); auto.
injection Hl1; intros HH1 HH2; rewrite HH2; auto.
intros h H h0 H0 a l H1.
case in_app_or with (1 := H1); auto; intros H2.
case (in_map_inv _ _ _ _ _ H2).
intros (a1, l1) (Ha1, Hl1); auto.
apply inpb_node_l; apply (H a l1).
injection Hl1; intros Hl2 Hl3; rewrite Hl3; auto.
case (in_map_inv _ _ _ _ _ H2).
intros (a1, l1) (Ha1, Hl1); auto.
apply inpb_node_r; apply (H0 a l1).
injection Hl1; intros Hl2 Hl3; rewrite Hl3; auto.
Qed.

(* Leaves in the tree are keys in the code *)
Theorem inpb_compute_ex :
 forall a p, inpb (pbleaf a) p -> exists l : _, In (a, l) (compute_pbcode p).
Proof using.
intros a p; elim p; simpl in |- *; auto.
intros a0 H; inversion H.
exists (nil (A:=bool)); auto.
intros p0 H H0; case H; auto.
inversion H0; auto.
intros x1; elim (compute_pbcode p0); simpl in |- *; auto.
intros HH; case HH.
intros a0 l H1 [H2| H2]; auto.
exists (false :: x1); left; rewrite H2; auto.
case H1; auto.
intros x H3; exists x; auto.
intros p0 H H0; case H; auto.
inversion H0; auto.
intros x1; elim (compute_pbcode p0); simpl in |- *; auto.
intros HH; case HH.
intros a0 l H1 [H2| H2]; auto.
exists (true :: x1); left; rewrite H2; auto.
case H1; auto.
intros x H3; exists x; auto.
intros p0 H p1 H0 H1; inversion H1.
case H; auto.
intros x Hx; exists (false :: x).
apply in_or_app; left; auto.
change
  (In ((fun v => match v with
                 | (a1, b1) => (a1, false :: b1)
                 end) (a, x))
     (map (fun v => match v with
                    | (a1, b1) => (a1, false :: b1)
                    end) (compute_pbcode p0))) in |- *;
 apply in_map; auto.
case H0; auto.
intros x Hx; exists (true :: x).
apply in_or_app; right; auto.
change
  (In ((fun v => match v with
                 | (a1, b1) => (a1, true :: b1)
                 end) (a, x))
     (map (fun v => match v with
                    | (a1, b1) => (a1, true :: b1)
                    end) (compute_pbcode p1))) in |- *;
 apply in_map; auto.
Qed.

(* The computing code has the first property to be prefix *)
Theorem pb_unique_prefix1 :
 forall (t : pbtree) (a1 a2 : A) (lb1 lb2 : list bool),
 In (a1, lb1) (compute_pbcode t) ->
 In (a2, lb2) (compute_pbcode t) -> is_prefix lb1 lb2 -> a1 = a2 :>A.
Proof using.
intros t; elim t; simpl in |- *; auto.
intros leaf a1 a2 lb1 lb2 H1 H2.
case H1; intros H3; [ injection H3 | case H3 ].
case H2; intros H4; [ injection H4 | case H4 ].
intros H H0 H5 H6 H7; apply trans_equal with (2 := H0); auto.
intros p H a1 a2 lb1 lb2 H0 H1 H2.
case (in_map_inv _ _ _ _ _ H0).
intros (a3, l3) (Ha3, Hl3).
case (in_map_inv _ _ _ _ _ H1).
intros (a4, l4) (Ha4, Hl4).
apply (H a1 a2 l3 l4); auto.
injection Hl3; intros HH1 HH2; rewrite HH2; auto.
injection Hl4; intros HH1 HH2; rewrite HH2; auto.
cut (is_prefix (false :: l3) (false :: l4));
 [ intros HH1; inversion HH1; auto | idtac ].
injection Hl3; injection Hl4; intros HH1 HH2 HH3 HH4; rewrite <- HH3;
 rewrite <- HH1; auto.
intros p H a1 a2 lb1 lb2 H0 H1 H2.
case (in_map_inv _ _ _ _ _ H0).
intros (a3, l3) (Ha3, Hl3).
case (in_map_inv _ _ _ _ _ H1).
intros (a4, l4) (Ha4, Hl4).
apply (H a1 a2 l3 l4); auto.
injection Hl3; intros HH1 HH2; rewrite HH2; auto.
injection Hl4; intros HH1 HH2; rewrite HH2; auto.
cut (is_prefix (true :: l3) (true :: l4));
 [ intros HH1; inversion HH1; auto | idtac ].
injection Hl3; injection Hl4; intros HH1 HH2 HH3 HH4; rewrite <- HH3;
 rewrite <- HH1; auto.
intros t1 Rec1 t2 Rec2 a1 a2 lb1 lb2 H1 H2.
case (in_app_or _ _ _ H1); case (in_app_or _ _ _ H2); clear H1 H2;
 intros H2 H1 H3.
generalize H1 H2; inversion H3.
intros H4; case (in_map_inv _ _ _ _ _ H4).
intros x; case x; intros x1 x2 (H5, H6); discriminate.
intros H5 H6; apply Rec1 with (lb1 := l1) (lb2 := l2); auto.
case (in_map_inv _ _ _ _ _ H5).
intros x; case x.
intros a l (H7, H8); injection H8.
intros R1 R2 R3; rewrite R1; rewrite R3; auto.
case (in_map_inv _ _ _ _ _ H6).
intros x; case x.
intros a l (H7, H8); injection H8.
intros R1 R2 R3; rewrite R1; rewrite R3; auto.
generalize H3.
case (in_map_inv _ _ _ _ _ H1).
intros x; case x; intros aa1 ll1 (H4, H5).
case (in_map_inv _ _ _ _ _ H2).
intros x1; case x1; intros aa2 ll2 (H6, H7).
inversion H5; inversion H7; intros tH8; inversion tH8.
generalize H3.
case (in_map_inv _ _ _ _ _ H1).
intros x; case x; intros aa1 ll1 (H4, H5).
case (in_map_inv _ _ _ _ _ H2).
intros x1; case x1; intros aa2 ll2 (H6, H7).
inversion H5; inversion H7; intros tH8; inversion tH8.
generalize H1 H2; inversion H3.
intros H4; case (in_map_inv _ _ _ _ _ H4).
intros x; case x; intros x1 x2 (H5, H6); discriminate.
intros H5 H6; apply Rec2 with (lb1 := l1) (lb2 := l2); auto.
case (in_map_inv _ _ _ _ _ H5).
intros x; case x.
intros a l (H7, H8); injection H8.
intros R1 R2 R3; rewrite R1; rewrite R3; auto.
case (in_map_inv _ _ _ _ _ H6).
intros x; case x.
intros a l (H7, H8); injection H8.
intros R1 R2 R3; rewrite R1; rewrite R3; auto.
Qed.

(* The computed code has unique keys *)
Theorem pb_unique_key :
 forall t, distinct_pbleaves t -> unique_key (compute_pbcode t).
Proof using.
intros t; elim t; simpl in |- *; auto.
intros p H H0.
apply unique_key_map; auto.
apply H; apply distinct_pbleaves_pl; auto.
intros (a1, b1) (a2, b2); simpl in |- *; auto.
intros p H H0.
apply unique_key_map; auto.
apply H; apply distinct_pbleaves_pr; auto.
intros (a1, b1) (a2, b2); simpl in |- *; auto.
intros p H p0 H0 H1.
apply unique_key_app; auto.
apply unique_key_map; auto.
apply H; apply distinct_pbleaves_l with (1 := H1); auto.
intros (a1, b1) (a2, b2); simpl in |- *; auto.
apply unique_key_map; auto.
apply H0; apply distinct_pbleaves_r with (1 := H1); auto.
intros (a1, b1) (a2, b2); simpl in |- *; auto.
intros a b1 c H2 H3.
case in_map_inv with (1 := H2); auto; case in_map_inv with (1 := H3); auto.
intros (a1, l1) (Ha1, Hl1) (a2, l2) (Ha2, Hl2).
apply (H1 (pbleaf a) p p0); auto.
injection Hl2; intros HH1 HH2; rewrite HH2.
apply in_pbcompute_inpb with (1 := Ha2).
injection Hl1; intros HH1 HH2; rewrite HH2.
apply in_pbcompute_inpb with (1 := Ha1).
Qed.

(* The computed code is prefix *)
Theorem pb_unique_prefix :
 forall t : pbtree, distinct_pbleaves t -> unique_prefix (compute_pbcode t).
Proof using.
intros t H1; split; try exact (pb_unique_prefix1 t); apply pb_unique_key; auto.
Qed.

(* 
  Predicate that checks if a position (a list of bool) can
  be safely added (adding an element is done without any removing)
*)

Inductive pbfree : list bool -> pbtree -> Prop :=
  | pbfree_left1 : forall b l, pbfree (true :: l) (pbleft b)
  | pbfree_left2 : forall b l, pbfree l b -> pbfree (false :: l) (pbleft b)
  | pbfree_right1 : forall b l, pbfree (false :: l) (pbright b)
  | pbfree_right2 : forall b l, pbfree l b -> pbfree (true :: l) (pbright b)
  | pbfree_node1 :
      forall b c l, pbfree l b -> pbfree (false :: l) (pbnode b c)
  | pbfree_node2 :
      forall b c l, pbfree l b -> pbfree (true :: l) (pbnode c b).
Hint Constructors pbfree : core.

(* Add an element in a tree at a given position (list of bool) *)
Fixpoint pbadd (a : A) (t : pbtree) (l : list bool) {struct l} : pbtree :=
  match l with
  | nil => pbleaf a
  | false :: l1 =>
      match t with
      | pbnode t1 t2 => pbnode (pbadd a t1 l1) t2
      | pbleft t1 => pbleft (pbadd a t1 l1)
      | pbright t2 => pbnode (pbadd a (pbleaf empty) l1) t2
      | _ => pbleft (pbadd a (pbleaf empty) l1)
      end
  | true :: l1 =>
      match t with
      | pbnode t1 t2 => pbnode t1 (pbadd a t2 l1)
      | pbright t2 => pbright (pbadd a t2 l1)
      | pbleft t1 => pbnode t1 (pbadd a (pbleaf empty) l1)
      | _ => pbright (pbadd a (pbleaf empty) l1)
      end
  end.

(* Adding to  a leaf replace it *)
Theorem pbadd_prop1 :
 forall a1 a2 l1, compute_pbcode (pbadd a1 (pbleaf a2) l1) = (a1, l1) :: nil.
Proof using.
intros a1 a2 l1; generalize a1 a2; elim l1; simpl in |- *; auto;
 clear a1 a2 l1.
intros a; case a; simpl in |- *; auto.
intros l H a1 a2; rewrite H; simpl in |- *; auto.
intros l H a1 a2; rewrite H; simpl in |- *; auto.
Qed.

(* Adding at a free position add to the code *)
Theorem pbadd_prop2 :
 forall a1 l1 l2,
 pbfree l1 l2 ->
 permutation (compute_pbcode (pbadd a1 l2 l1))
   ((a1, l1) :: compute_pbcode l2).
Proof using.
intros a1 l1 l2 H; generalize a1; elim H; clear H a1 l1 l2; simpl in |- *;
 auto.
intros b l a1; rewrite pbadd_prop1; simpl in |- *; auto.
apply
 permutation_trans
  with
    (((a1, true :: l) :: nil) ++
     map (fun v => match v with
                   | (a0, b1) => (a0, false :: b1)
                   end) (compute_pbcode b)); auto.
simpl in |- *; auto.
intros b l H H0 a1.
apply
 permutation_trans
  with
    (map (fun v => match v with
                   | (a0, b1) => (a0, false :: b1)
                   end) ((a1, l) :: compute_pbcode b));
 auto.
intros b l a1; rewrite pbadd_prop1; simpl in |- *; auto.
intros b l H H0 a1.
apply
 permutation_trans
  with
    (map (fun v => match v with
                   | (a0, b1) => (a0, true :: b1)
                   end) ((a1, l) :: compute_pbcode b));
 auto.
intros b c l H H0 a1.
apply
 permutation_trans
  with
    (map (fun v => match v with
                   | (a0, b1) => (a0, false :: b1)
                   end) ((a1, l) :: compute_pbcode b) ++
     map (fun v => match v with
                   | (a0, b1) => (a0, true :: b1)
                   end) (compute_pbcode c)); auto.
intros b c l H H0 a1.
apply
 permutation_trans
  with
    (map (fun v => match v with
                   | (a0, b1) => (a0, false :: b1)
                   end) (compute_pbcode c) ++
     map (fun v => match v with
                   | (a0, b1) => (a0, true :: b1)
                   end) ((a1, l) :: compute_pbcode b));
 auto.
apply
 permutation_trans
  with
    (map (fun v => match v with
                   | (a0, b1) => (a0, true :: b1)
                   end) ((a1, l) :: compute_pbcode b) ++
     map (fun v => match v with
                   | (a0, b1) => (a0, false :: b1)
                   end) (compute_pbcode c)); auto;
 simpl in |- *; auto.
Qed.

(* The free positions have not changed *)
Theorem pbfree_pbadd_prop1 :
 forall a1 l l1,
 ~ is_prefix l l1 ->
 ~ is_prefix l1 l -> pbfree l (pbadd a1 (pbleaf empty) l1).
Proof using.
intros a1 l l1; generalize a1 l; elim l1; simpl in |- *; auto; clear a1 l l1.
intros a1 l H H0; elim H0; auto.
intros a; case a.
intros l H a1 l0; case l0.
intros H0; elim H0; auto.
intros b; case b; simpl in |- *; auto.
intros l1 H0 H1; apply pbfree_right2.
apply H; auto.
intros l H a1 l0; case l0; simpl in |- *; auto.
intros H0; elim H0; auto.
intros b; case b; simpl in |- *; auto.
intros l1 H0 H1; apply pbfree_left2.
apply H; auto.
Qed.

(* The free positions now include the ones of the added tree *)
Theorem pbfree_pbadd_prop2 :
 forall a l1 l2 l3,
 pbfree l1 l3 ->
 ~ is_prefix l2 l1 -> ~ is_prefix l1 l2 -> pbfree l1 (pbadd a l3 l2).
Proof using.
intros a l1 l2; generalize a l1; elim l2; simpl in |- *; auto.
intros a0 l0 l3 H H0; case H0; auto.
intros a0; case a0.
intros l H a1 l0; case l0.
intros l3 H0; inversion H0.
intros b; case b; simpl in |- *; auto.
intros l3 l4; case l4; simpl in |- *; auto.
intros a2 H0 H1 H2; apply pbfree_right2.
apply pbfree_pbadd_prop1; auto.
intros p H0 H1 H2; apply pbfree_node2.
apply pbfree_pbadd_prop1; auto.
intros a2 H0 H1 H2; apply pbfree_right2.
apply H; auto.
inversion H0; auto.
intros p p0 H0 H1 H2; apply pbfree_node2.
apply H; auto.
inversion H0; auto.
intros l3 l4; case l4; simpl in |- *; auto.
intros p H0 H1 H2; apply pbfree_node1.
inversion H0; auto.
intros p p0 H0 H1 H2; apply pbfree_node1.
inversion H0; auto.
intros l H a1 l0; case l0.
intros l3 H0; inversion H0.
intros b; case b; simpl in |- *; auto.
intros l3 l4; case l4; simpl in |- *; auto.
intros p H0 H1 H2; apply pbfree_node2.
inversion H0; auto.
intros p p0 H0 H1 H2; apply pbfree_node2.
inversion H0; auto.
intros l3 l4; case l4; simpl in |- *; auto.
intros a2 H0 H1 H2; apply pbfree_left2.
apply pbfree_pbadd_prop1; auto.
intros a2 H0 H1 H2; apply pbfree_left2.
apply H; auto.
inversion H0; auto.
intros p H0 H1 H2; apply pbfree_node1.
apply pbfree_pbadd_prop1; auto.
intros p p0 H0 H1 H2; apply pbfree_node1.
apply H; auto.
inversion H0; auto.
Qed.

(* The free positions have not changed *)
Theorem distinct_pbleaves_pbadd_prop1 :
 forall a a1 l1, distinct_pbleaves (pbadd a1 (pbleaf a) l1).
Proof using.
intros a a1 l1; generalize a a1; elim l1; simpl in |- *; auto; clear a a1 l1.
intros a2; case a2; auto.
Qed.

(* Adding in leaf does not create nodes  *)
Theorem in_pbleaf_node :
 forall a1 a2 a3 a4 l, ~ inpb (pbnode a1 a2) (pbadd a3 (pbleaf a4) l).
Proof using.
intros a1 a2 a3 a4 l; generalize a1 a2 a3 a4; elim l; simpl in |- *; auto;
 clear a1 a2 a3 a4 l.
intros a1 a2 a3 a4; red in |- *; intros H; inversion H.
intros a; case a.
intros l H a1 a2 a3 a4; red in |- *; intros H0; case (H a1 a2 a3 empty).
inversion H0; auto.
intros l H a1 a2 a3 a4; red in |- *; intros H0; case (H a1 a2 a3 empty).
inversion H0; auto.
Qed.

(* Adding in leaf just replace the leaf *)
Theorem inpbleaf_eq :
 forall a1 a2 a3 l, inpb (pbleaf a1) (pbadd a2 (pbleaf a3) l) -> a1 = a2.
Proof using.
intros a1 a2 a3 l; generalize a1 a2 a3; elim l; simpl in |- *; auto;
 clear a1 a2 a3 l.
intros a1 a2 a3 H; inversion H; auto.
intros a; case a.
intros l H a1 a2 a3 H0; apply (H a1 a2 empty).
inversion H0; auto.
intros l H a1 a2 a3 H0; apply (H a1 a2 empty).
inversion H0; auto.
Qed.

(* Adding a leaf we just effectivement add a leaf *)
Theorem inpbleaf_pbadd_inv :
 forall a1 a2 a3 l,
 inpb (pbleaf a1) (pbadd a2 a3 l) -> a1 = a2 \/ inpb (pbleaf a1) a3.
Proof using.
intros a1 a2 a3 l; generalize a1 a2 a3; elim l; simpl in |- *; auto;
 clear a1 a2 a3 l.
intros a1 a2 a3 H0; inversion H0; auto.
intros a; case a.
intros l H a1 a2 a3; case a3; auto.
intros a0 H0; left; apply (inpbleaf_eq a1 a2 empty l); auto.
inversion H0; auto.
intros p H1; inversion H1; auto.
left; apply (inpbleaf_eq a1 a2 empty l); auto.
intros p H0; case (H a1 a2 p); auto.
inversion H0; auto.
intros p p0 H1; inversion H1; auto.
case (H a1 a2 p0); auto.
intros l H a1 a2 a3; case a3; auto.
intros a0 H1; left; apply (inpbleaf_eq a1 a2 empty l); auto.
inversion H1; auto.
intros p H1; case (H a1 a2 p); auto.
inversion H1; auto.
intros p H1; inversion H1.
left; apply (inpbleaf_eq a1 a2 empty l); auto.
case H0; auto.
intros p p0 H1; inversion H1.
case (H a1 a2 p); auto.
case H0; auto.
Qed.

(* Adding creates a new leaf *)
Theorem inpb_pbadd : forall a1 l1 t1, inpb (pbleaf a1) (pbadd a1 t1 l1).
Proof using.
intros a1 l1; elim l1; simpl in |- *; auto.
intros b; case b; simpl in |- *; auto.
intros l H t1; (case t1; simpl in |- *; auto).
intros l H t1; (case t1; simpl in |- *; auto).
Qed.
Hint Resolve inpb_pbadd : core.

(* 
  Subtrees in an added tree either contains the added leaf or
  was a subtree of the initial tree
*)

Theorem inpb_pbadd_ex :
 forall a1 l1 t1 t,
 inpb t (pbadd a1 t1 l1) -> inpb (pbleaf a1) t \/ inpb t t1.
Proof using.
intros a1 l1; elim l1; simpl in |- *; auto.
intros t1 t H; inversion H; auto.
intros a l H t1 t; case a; case t1; simpl in |- *; auto.
intros a0 H0; inversion H0; auto.
generalize H3 H; case l; simpl in |- *; auto.
intros p H0; inversion H0; auto.
left; generalize H3; elim l; simpl in |- *; auto.
intros HH; inversion HH; auto.
intros b; case b; simpl in |- *; auto.
intros l0 H5 H6; inversion H6; auto.
intros l0 H5 H6; inversion H6; auto.
intros p H0; inversion H0; auto.
case (H p t); auto.
intros p p0 H0; inversion H0; auto.
case (H p0 t); auto.
intros a0 H0; inversion H0; auto.
left; generalize H3; elim l; simpl in |- *; auto.
intros HH; inversion HH; auto.
intros b; case b; simpl in |- *; auto.
intros l0 H5 H6; inversion H6; auto.
intros l0 H5 H6; inversion H6; auto.
intros p H0; inversion H0; auto.
case (H p t); auto.
intros p H0; inversion H0; auto.
left; generalize H3; elim l; simpl in |- *; auto.
intros HH; inversion HH; auto.
intros b; case b; simpl in |- *; auto.
intros l0 H5 H6; inversion H6; auto.
intros l0 H5 H6; inversion H6; auto.
intros p p0 H0; inversion H0; auto.
case (H p t); auto.
Qed.

(* Compute all the leaves *)
Fixpoint all_pbleaves (t : pbtree) : list A :=
  match t with
  | pbleaf a => a :: nil
  | pbleft t1 => all_pbleaves t1
  | pbright t1 => all_pbleaves t1
  | pbnode t1 t2 => all_pbleaves t1 ++ all_pbleaves t2
  end.

(* a leaf is in the list of all leaves *)
Theorem all_pbleaves_in :
 forall t a, inpb (pbleaf a) t -> In a (all_pbleaves t).
Proof using.
intros t; elim t; simpl in |- *; auto.
intros a a0 H; inversion H; auto.
intros p H a H0; inversion H0; auto.
intros p H a H0; inversion H0; auto.
intros b H b0 H0 a H1; apply in_or_app; inversion H1; auto.
Qed.

(* An element of the list of all leaves is a leaf of the tree *)
Theorem all_pbleaves_inpb :
 forall t a, In a (all_pbleaves t) -> inpb (pbleaf a) t.
Proof using.
intros t; elim t; simpl in |- *; auto.
intros a a0 [H| H]; [ rewrite H | case H ]; auto.
intros b H b0 H0 a H1; case in_app_or with (1 := H1); auto.
Qed.

(* If the list of all leaves is unique, the tree has distinct leaves *)
Theorem all_pbleaves_unique :
 forall t, ulist (all_pbleaves t) -> distinct_pbleaves t.
Proof using.
intros t; elim t; simpl in |- *; auto.
intros b H b0 H0 H1; red in |- *.
intros t0 t1 t2 H2; inversion H2.
intros H4 H7; case (inpb_ex t0); intros a HH.
apply ulist_app_inv with (a := a) (1 := H1); auto; apply all_pbleaves_in;
 apply inpb_trans with (1 := HH); auto.
apply H; auto; try apply ulist_app_inv_l with (1 := H1).
apply H0; auto; try apply ulist_app_inv_r with (1 := H1).
Qed.

(* If the tree has distinct leaves, the list of all leaves is unique *)
Theorem all_pbleaves_ulist :
 forall t, distinct_pbleaves t -> ulist (all_pbleaves t).
Proof using.
intros t; elim t; simpl in |- *; auto.
intros p H H0; apply H; apply distinct_pbleaves_pl; auto.
intros p H H0; apply H; apply distinct_pbleaves_pr; auto.
intros b H b0 H0 H1; apply ulist_app; auto.
apply H; apply distinct_pbleaves_l with (1 := H1).
apply H0; apply distinct_pbleaves_r with (1 := H1).
intros a H2 H3; case (H1 (pbleaf a) b b0); auto.
apply all_pbleaves_inpb with (1 := H2).
apply all_pbleaves_inpb with (1 := H3).
Qed.

(* Adding a leaf change the list of all leaves *)
Theorem all_pbleaves_pbadd :
 forall l1 a1 a2 l,
 In a2 (all_pbleaves (pbadd a1 l l1)) -> a2 = a1 \/ In a2 (all_pbleaves l).
Proof using.
intros l1; elim l1; simpl in |- *; auto.
intros a1 a2 l [H| H]; auto; case H.
intros a; case a.
intros l H a1 a2 l0; case l0; simpl in |- *; auto.
intros a0; elim l; simpl in |- *; auto.
intuition.
intros a3; case a3; simpl in |- *; auto.
intros p H0; case in_app_or with (1 := H0); auto.
elim l; simpl in |- *; auto.
intuition.
intros a3; case a3; simpl in |- *; auto.
intros p p0 H0; case in_app_or with (1 := H0); auto with datatypes.
intros H1; case H with (1 := H1); intuition.
intros l H a1 a2 l0; case l0; simpl in |- *; auto.
intros a0; elim l; simpl in |- *; auto.
intuition.
intros a3; case a3; simpl in |- *; auto.
intros p H0; case in_app_or with (1 := H0); auto.
elim l; simpl in |- *; auto.
intuition.
intros a3; case a3; simpl in |- *; auto.
intros p p0 H0; case in_app_or with (1 := H0); auto with datatypes.
intros H1; case H with (1 := H1); intuition.
Qed.

(* Adding in a leaf just creates a singleton list *)
Theorem all_pbleaves_pbleaf :
 forall l a1 a2, all_pbleaves (pbadd a1 (pbleaf a2) l) = a1 :: nil.
Proof using.
intros l; elim l; simpl in |- *; auto.
intros b; case b; simpl in |- *; auto.
Qed.

(* Adding a new leaf preserves the uniqueness of the list of all leaves *)
Theorem ulist_pbadd_prop2 :
 forall a1 l1 t,
 ~ inpb (pbleaf a1) t ->
 ulist (all_pbleaves t) -> ulist (all_pbleaves (pbadd a1 t l1)).
Proof using.
intros a1 l1; elim l1; simpl in |- *; auto.
intros b; case b; simpl in |- *; auto.
intros l H t; case t; simpl in |- *; auto.
intros a H0 H1; rewrite all_pbleaves_pbleaf; simpl in |- *; auto.
rewrite all_pbleaves_pbleaf; intros p H0 H1.
apply ulist_app; simpl in |- *; auto.
intros a H2 [H3| H3]; auto; (case H0; rewrite H3); auto.
apply all_pbleaves_inpb; auto.
intros p p0 H0 H1; apply ulist_app; auto.
apply ulist_app_inv_l with (1 := H1); auto.
apply H.
Contradict H0; auto.
apply ulist_app_inv_r with (1 := H1); auto.
intros a H2 H3; case all_pbleaves_pbadd with (1 := H3).
intros H4; Contradict H0; rewrite <- H4; apply all_pbleaves_inpb;
 simpl in |- *; auto with datatypes.
intros H4; apply ulist_app_inv with (1 := H1) (a := a); auto.
intros l H t; case t; simpl in |- *; auto.
intros a H0 H1; rewrite all_pbleaves_pbleaf; simpl in |- *; auto.
rewrite all_pbleaves_pbleaf; intros p H0 H1.
apply ulist_app; simpl in |- *; auto.
intros a [H3| H3] H2; auto; (case H0; rewrite H3); auto.
apply all_pbleaves_inpb; auto.
intros p p0 H0 H1; apply ulist_app; auto.
apply H.
Contradict H0; auto.
apply ulist_app_inv_l with (1 := H1); auto.
apply ulist_app_inv_r with (1 := H1); auto.
intros a H2 H3; case all_pbleaves_pbadd with (1 := H2).
intros H4; Contradict H0; rewrite <- H4; apply all_pbleaves_inpb;
 simpl in |- *; auto with datatypes.
intros H4; apply ulist_app_inv with (1 := H1) (a := a); auto.
Qed.

(*
  Adding a new leaf to a tree with distinct leaves
  creates a tree with distinct leaves 
*)

Theorem distinct_pbleaves_pbadd_prop2 :
 forall a1 l1 l,
 ~ inpb (pbleaf a1) l ->
 distinct_pbleaves l -> distinct_pbleaves (pbadd a1 l l1).
Proof using.
intros a1 l1 l H H0; apply all_pbleaves_unique.
apply ulist_pbadd_prop2; auto.
apply all_pbleaves_ulist; auto.
Qed.

(* Adding always on the left creates a left tree *)
Theorem fold_pbadd_prop_left :
 forall l a,
 l <> nil ->
 fold_right (fun a (c : pbtree) => pbadd (fst a) c (snd a))
   (pbleaf a)
   (map (fun v => match v with
                  | (a1, b1) => (a1, false :: b1)
                  end) l) =
 pbleft
   (fold_right (fun a (c : pbtree) => pbadd (fst a) c (snd a)) (pbleaf a) l).
Proof using.
intros l; elim l.
intros a H; elim H; simpl in |- *; auto.
simpl in |- *; intros (a1, l1) l0; case l0.
case l1; simpl in |- *; auto.
intros p l2 H a H0.
rewrite H; auto.
red in |- *; intros H1; discriminate.
Qed.

(* Adding always on the right  creates a right tree *)
Theorem fold_pbadd_prop_right :
 forall l a,
 l <> nil ->
 fold_right (fun a (c : pbtree) => pbadd (fst a) c (snd a))
   (pbleaf a)
   (map (fun v => match v with
                  | (a1, b1) => (a1, true :: b1)
                  end) l) =
 pbright
   (fold_right (fun a (c : pbtree) => pbadd (fst a) c (snd a)) (pbleaf a) l).
Proof using.
intros l; elim l.
intros a H; elim H; simpl in |- *; auto.
simpl in |- *; intros (a1, l1) l0; case l0.
case l1; simpl in |- *; auto.
intros p l2 H a H0.
rewrite H; auto.
red in |- *; intros H1; discriminate.
Qed.

(* Adding always on the right on a left tree  creates a node tree *)
Theorem fold_pbadd_prop_node :
 forall l a,
 l <> nil ->
 fold_right (fun a (c : pbtree) => pbadd (fst a) c (snd a))
   (pbright a)
   (map (fun v => match v with
                  | (a1, b1) => (a1, false :: b1)
                  end) l) =
 pbnode
   (fold_right (fun a (c : pbtree) => pbadd (fst a) c (snd a))
      (pbleaf empty) l) a.
Proof using.
intros l; elim l.
intros a H; elim H; simpl in |- *; auto.
simpl in |- *; intros (a1, l1) l0; case l0.
case l1; simpl in |- *; auto.
intros p l2 H a H0.
rewrite H; auto.
red in |- *; intros H1; discriminate.
Qed.

(* Turn a code into a tree *)
Definition pbbuild (l : code A) : pbtree :=
  fold_right (fun a c => pbadd (fst a) c (snd a)) (pbleaf empty) l.

(*
  All the path that are not prefix in the code are free in
  the corresponding tree
*)

Theorem pbfree_pbbuild_prop1 :
 forall a l1 l2,
 l2 <> nil -> unique_prefix ((a, l1) :: l2) -> pbfree l1 (pbbuild l2).
Proof using.
intros a l1 l2; generalize a l1; elim l2; clear a l1 l2; simpl in |- *; auto.
intros a l1 H; elim H; auto.
intros (a1, l1) l; case l.
unfold pbbuild in |- *; simpl in |- *; intros H a l0 H0 H1;
 apply pbfree_pbadd_prop1.
red in |- *; intros H2; absurd (a = a1).
red in |- *; intros H3;
 case
  unique_key_in
   with (a := a) (b1 := l0) (b2 := l1) (1 := unique_prefix2 _ _ H1);
 simpl in |- *; auto.
rewrite H3; auto.
apply unique_prefix1 with (1 := H1) (lb1 := l0) (lb2 := l1); simpl in |- *;
 auto.
red in |- *; intros H2; absurd (a = a1).
red in |- *; intros H3;
 case
  unique_key_in
   with (a := a) (b1 := l0) (b2 := l1) (1 := unique_prefix2 _ _ H1);
 simpl in |- *; auto.
rewrite H3; auto.
apply sym_equal; apply unique_prefix1 with (1 := H1) (lb1 := l1) (lb2 := l0);
 simpl in |- *; auto.
intros p l0 H a l2 H0 H1.
unfold pbbuild in |- *; simpl in |- *.
apply pbfree_pbadd_prop2; auto.
apply H with (a := a).
red in |- *; intros; discriminate.
apply unique_prefix_inv with (a := a1) (l := l1).
apply unique_prefix_permutation with (2 := H1); auto.
red in |- *; intros H2; absurd (a = a1).
red in |- *; intros H3;
 case
  unique_key_in
   with (a := a) (b1 := l2) (b2 := l1) (1 := unique_prefix2 _ _ H1);
 simpl in |- *; auto.
rewrite H3; auto.
apply sym_equal; apply unique_prefix1 with (1 := H1) (lb1 := l1) (lb2 := l2);
 simpl in |- *; auto.
red in |- *; intros H2; absurd (a = a1).
red in |- *; intros H3;
 case
  unique_key_in
   with (a := a) (b1 := l2) (b2 := l1) (1 := unique_prefix2 _ _ H1);
 simpl in |- *; auto.
rewrite H3; auto.
apply unique_prefix1 with (1 := H1) (lb1 := l2) (lb2 := l1); simpl in |- *;
 auto.
Qed.

(* The keys of the code are a permutation of the leaves of the tree *)
Theorem all_pbleaves_compute_pb :
 forall t, permutation (map (fst (B:=_)) (compute_pbcode t)) (all_pbleaves t).
Proof using.
cut
 (forall b l,
  map (fst (B:=_))
    (map (fun v : A * list bool => let (a1, b1) := v in (a1, b :: b1)) l) =
  map (fst (B:=_)) l); [ intros HH | idtac ].
intros t; elim t; simpl in |- *; auto.
intros p H; rewrite HH; auto.
intros p H; rewrite HH; auto.
intros p H p0 H0; rewrite map_app; apply permutation_app_comp; auto.
repeat rewrite HH; auto.
repeat rewrite HH; auto.
intros b l; elim l; simpl in |- *; auto.
intros a l0 H1; apply f_equal2 with (f := cons (A:=A)); auto.
case a; simpl in |- *; auto.
Qed.

(*
  Taking a code, turning it in a tree, then computing a code
  gives a permutation of the initial code
*)

Theorem pbbuild_compute_perm :
 forall c,
 c <> nil -> unique_prefix c -> permutation (compute_pbcode (pbbuild c)) c.
Proof using.
intros c; elim c; simpl in |- *; auto.
intros H; case H; auto.
intros (a1, l1) l.
case l.
unfold pbbuild in |- *; simpl in |- *; auto.
intros H H0 H1; rewrite pbadd_prop1; auto.
intros (a2, l2) l3; simpl in |- *.
intros H H0 H1;
 apply
  permutation_trans
   with ((a1, l1) :: compute_pbcode (pbadd a2 (pbbuild l3) l2)).
unfold pbbuild in |- *; simpl in |- *; apply pbadd_prop2.
cut (~ is_prefix l1 l2); [ intros Ip1 | idtac ].
cut (~ is_prefix l2 l1); [ intros Ip2 | idtac ].
generalize H1; case l3; auto.
intros H2; apply pbfree_pbadd_prop1; auto.
intros p l0 H2.
apply pbfree_pbadd_prop2; auto.
change (pbfree l1 (pbbuild (p :: l0))) in |- *.
apply pbfree_pbbuild_prop1 with (a := a1); auto.
red in |- *; intros; discriminate.
apply unique_prefix_inv with (a := a2) (l := l2).
apply unique_prefix_permutation with (2 := H2); auto.
red in |- *; intros HH2; absurd (a1 = a2).
red in |- *; intros H3;
 case
  unique_key_in
   with (a := a1) (b1 := l1) (b2 := l2) (1 := unique_prefix2 _ _ H1);
 simpl in |- *; auto.
rewrite H3; auto.
apply sym_equal; apply unique_prefix1 with (1 := H1) (lb1 := l2) (lb2 := l1);
 simpl in |- *; auto.
red in |- *; intros HH2; absurd (a1 = a2).
red in |- *; intros H3;
 case
  unique_key_in
   with (a := a1) (b1 := l1) (b2 := l2) (1 := unique_prefix2 _ _ H1);
 simpl in |- *; auto.
rewrite H3; auto.
apply unique_prefix1 with (1 := H1) (lb1 := l1) (lb2 := l2); simpl in |- *;
 auto.
apply permutation_skip.
apply H; auto.
red in |- *; intros Hj; discriminate.
apply unique_prefix_inv with (1 := H1); auto.
Qed.

(* 
  Building tree from a code, the list of leaves is a permutation of
  the keys of the code
*)

Theorem all_pbleaves_pbbuild :
 forall c,
 c <> nil ->
 unique_prefix c ->
 permutation (map (fst (B:=_)) c) (all_pbleaves (pbbuild c)).
Proof using.
intros c H H0;
 apply permutation_trans with (map (fst (B:=_)) (compute_pbcode (pbbuild c))).
apply permutation_map.
apply permutation_sym; apply pbbuild_compute_perm; auto.
apply all_pbleaves_compute_pb; auto.
Qed.

(* Leaves in a built tree are elements of the codes *)
Theorem inpb_pbbuild_inv :
 forall a c,
 c <> nil -> inpb (pbleaf a) (pbbuild c) -> exists l : _, In (a, l) c.
Proof using.
intros a c; generalize a; elim c; simpl in |- *; auto.
intros a0 H; elim H; auto.
intros (a1, l1).
intros l; case l.
simpl in |- *; auto.
unfold pbbuild in |- *; simpl in |- *; intros H a0 H0 H1; exists l1; left;
 apply f_equal2 with (f := pair (A:=A) (B:=list bool));
 auto.
apply sym_equal; apply inpbleaf_eq with (1 := H1).
unfold pbbuild in |- *; simpl in |- *; intros p l0 H a0 H0 H1.
case inpbleaf_pbadd_inv with (1 := H1); auto; intros H2.
exists l1; left; apply f_equal2 with (f := pair (A:=A) (B:=list bool)); auto.
case (H a0); auto.
red in |- *; intros H3; discriminate.
intros x H3; exists x; simpl in |- *; auto.
Qed.

(* Built tree from prefix code has distinct leaves *)
Theorem pbbuild_distinct_pbleaves :
 forall c, unique_prefix c -> distinct_pbleaves (pbbuild c).
Proof using.
intros c; elim c; unfold pbbuild in |- *; simpl in |- *; auto.
intros (a1, l1) l; case l; auto.
simpl in |- *; intros H H0; apply distinct_pbleaves_pbadd_prop1; auto.
intros (a2, l2) l3 H0 H1; apply distinct_pbleaves_pbadd_prop2; auto.
change (~ inpb (pbleaf a1) (pbbuild ((a2, l2) :: l3))) in |- *.
red in |- *; intros H2; case inpb_pbbuild_inv with (2 := H2).
red in |- *; intros H; discriminate.
intros x H; case unique_key_in with (b2 := x) (1 := unique_prefix2 _ _ H1);
 auto.
apply H0.
apply unique_prefix_inv with (1 := H1); auto.
Qed.

(*
  The composition of building and computing on trees
  with distinct leaves is the identity
*)

Theorem pbbuild_compute_peq :
 forall t, distinct_pbleaves t -> pbbuild (compute_pbcode t) = t.
Proof using.
intros t; elim t; simpl in |- *; auto.
intros p H H0; unfold pbbuild in |- *.
rewrite fold_pbadd_prop_left; auto.
change (pbleft (pbbuild (compute_pbcode p)) = pbleft p) in |- *.
apply f_equal with (f := pbleft); auto; apply H.
apply distinct_pbleaves_pl with (1 := H0).
intros p H H0; unfold pbbuild in |- *.
rewrite fold_pbadd_prop_right; auto.
change (pbright (pbbuild (compute_pbcode p)) = pbright p) in |- *.
apply f_equal with (f := pbright); auto; apply H.
apply distinct_pbleaves_pr with (1 := H0).
intros p H p0 H0 H1.
unfold pbbuild in |- *.
rewrite fold_right_app.
rewrite fold_pbadd_prop_right; auto.
rewrite fold_pbadd_prop_node; auto.
change
  (pbnode (pbbuild (compute_pbcode p)) (pbbuild (compute_pbcode p0)) =
   pbnode p p0) in |- *.
apply f_equal2 with (f := pbnode).
apply H; apply distinct_pbleaves_l with (1 := H1).
apply H0; apply distinct_pbleaves_r with (1 := H1).
Qed.

(* 
  Adding a true in all the element in the code adds  a right 
  on top the built tree
*)

Theorem pbbuild_true_pbright :
 forall c,
 c <> nil ->
 pbbuild (map (fun x => (fst x, true :: snd x)) c) = pbright (pbbuild c).
Proof using.
intros c; elim c; simpl in |- *; auto.
intros H; case H; auto.
intros a l; case a; case l.
intros a0 l0 H H0; simpl in |- *; auto.
intros p l0 a0 l1 H H0; rewrite H; auto.
intros; discriminate.
Qed.

(* 
  Building can be decomposed in the codes starting with true
  and the one starting by false
*)

Theorem pbbuild_pbnode :
 forall c1 c2,
 c1 <> nil ->
 c2 <> nil ->
 pbbuild
   (map (fun x => (fst x, false :: snd x)) c1 ++
    map (fun x => (fst x, true :: snd x)) c2) =
 pbnode (pbbuild c1) (pbbuild c2).
Proof using.
intros c1 c2 Hc1 Hc2; unfold pbbuild in |- *.
rewrite fold_right_app.
fold pbbuild in |- *.
generalize pbbuild_true_pbright; unfold pbbuild in |- *; intros tmp;
 rewrite tmp; clear tmp; auto.
generalize Hc1; elim c1; simpl in |- *; auto.
intros H; case H; auto.
intros a l; case a; case l; simpl in |- *; auto.
intros p l0 a0 l1 H Hc0; rewrite H; auto.
intros; discriminate.
Qed.

End PBTree.
Arguments pbleaf [A].
Arguments pbleft [A].
Arguments pbright [A].
Arguments pbnode [A].
Arguments inpb [A].
Arguments pbfree [A].
Arguments compute_pbcode [A].
Arguments pbadd [A].
Arguments pbbuild [A].
Arguments all_pbleaves [A].
Arguments distinct_pbleaves [A].
Arguments compute_pbcode [A].
Arguments inpb_dec [A].
Hint Constructors inpb : core.
Hint Resolve distinct_pbleaves_pbleaf : core.
Hint Resolve distinct_pbleaves_pbleft distinct_pbleaves_pbright : core.
Hint Resolve compute_pbcode_not_null : core.
Hint Resolve compute_pbcode_not_null : core.
Hint Constructors pbfree : core.