Huffman.OneStep

(* This program is free software; you can redistribute it and/or      *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1   *)
(* of the License, or (at your option) any later version.             *)
(*                                                                    *)
(* This program is distributed in the hope that it will be useful,    *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of     *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the      *)
(* GNU Lesser General Public License for more details.                *)
(*                                                                    *)
(* You should have received a copy of the GNU Lesser General Public   *)
(* License along with this program; if not, write to the Free         *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA                                                     *)

(**********************************************************************
    Proof of Huffman algorithm: OneStep.v                            
                                                                     
    Definition of one step of the building process (merging the      
    smallest tree) and its properties                                
                                    Laurent.Thery@inria.fr (2003)    
 **********************************************************************)


From Huffman Require Export WeightTree.
From Huffman Require Export Ordered.
From Huffman Require Export SameSumLeaves.

Section OneStep.
Variable A : Type.
Variable f : A -> nat.

(* 
  A step is valid if the two smallest elements of the initial list
  have been merged
*)

Definition one_step (l1 l2 : list (btree A)) : Prop :=
  exists l3 : list (btree A),
    (exists t1 : btree A,
       (exists t2 : btree A,
          ordered (sum_order f) (t1 :: t2 :: l3) /\
          permutation l1 (t1 :: t2 :: l3) /\
          permutation l2 (node t1 t2 :: l3))).

(* Choosing one step or another does not change the weight *)
Theorem one_step_weight_tree_list :
 forall l1 l2 l3 : list (btree A),
 one_step l1 l2 ->
 one_step l1 l3 -> weight_tree_list f l2 = weight_tree_list f l3.
Proof using.
intros l1 l2 l3 (l4, (t1, (t2, (H1, (H2, H3)))))
 (l5, (t3, (t4, (H4, (H5, H6))))).
rewrite weight_tree_list_permutation with (1 := H3).
rewrite weight_tree_list_permutation with (1 := H6).
repeat rewrite weight_tree_list_node.
apply f_equal2 with (f := plus).
cut
 (map (sum_leaves f) (t1 :: t2 :: l4) = map (sum_leaves f) (t3 :: t4 :: l5)).
simpl in |- *; intros H7; injection H7.
intros H8 H9 H10; repeat apply f_equal2 with (f := plus); auto.
apply ordered_sum_leaves_eq; auto.
apply permutation_trans with (2 := H5); auto.
apply permutation_sym; auto.
rewrite <- weight_tree_list_permutation with (1 := H2).
apply weight_tree_list_permutation; auto.
Qed.

(* Choosing one step or another does not change the sum of leaves *)
Theorem one_step_same_sum_leaves :
 forall l1 l2 l3 : list (btree A),
 one_step l1 l2 -> one_step l1 l3 -> same_sum_leaves f l2 l3.
intros l1 l2 l3 (l4, (t1, (t2, (H1, (H2, H3)))))
 (l5, (t3, (t4, (H4, (H5, H6))))).
Proof using.
red in |- *.
exists (node t1 t2 :: l4); exists (node t3 t4 :: l5); auto; simpl in |- *;
 auto.
split; auto; split; auto.
cut
 (map (sum_leaves f) (t1 :: t2 :: l4) = map (sum_leaves f) (t3 :: t4 :: l5)).
simpl in |- *; intros H7; injection H7; intros H8 H9 H10;
 apply f_equal2 with (f := cons (A:=nat)); auto.
apply ordered_sum_leaves_eq; auto.
apply permutation_trans with (2 := H5); auto.
apply permutation_sym; auto.
Qed.

(* Choosing one step or another does not change weight and sum leaves *)
Theorem one_step_comp :
 forall l1 l2 l3 l4 : list (btree A),
 weight_tree_list f l1 = weight_tree_list f l2 ->
 same_sum_leaves f l1 l2 ->
 one_step l1 l3 ->
 one_step l2 l4 ->
 weight_tree_list f l3 = weight_tree_list f l4 /\ same_sum_leaves f l3 l4.
Proof using.
intros l1 l2 l3 l4 H1 (l5, (l6, (H2, (H3, H4))))
 (l7, (t1, (t2, (H5, (H6, H7))))) (l8, (t3, (t4, (H8, (H9, H10))))).
cut
 (map (sum_leaves f) (t1 :: t2 :: l7) = map (sum_leaves f) (t3 :: t4 :: l8)).
intros H11.
split.
rewrite weight_tree_list_permutation with (1 := H7).
rewrite weight_tree_list_permutation with (1 := H10).
repeat rewrite weight_tree_list_node.
apply f_equal2 with (f := plus).
injection H11; intros H12 H13 H14; auto.
rewrite weight_tree_list_permutation with (1 := permutation_sym _ _ _ H6).
rewrite weight_tree_list_permutation with (1 := permutation_sym _ _ _ H9);
 auto.
red in |- *; exists (node t1 t2 :: l7); exists (node t3 t4 :: l8);
 repeat (split; auto).
simpl in |- *.
simpl in H11; injection H11; auto.
intros; apply f_equal2 with (f := cons (A:=nat)); auto.
apply ordered_perm_antisym_eq with (order := le).
exact le_trans.
exact le_antisym.
apply permutation_trans with (map (sum_leaves f) l1).
generalize
 (permutation_map _ _ (sum_leaves f) _ _ (permutation_sym _ _ _ H6));
 auto.
apply permutation_trans with (map (sum_leaves f) l5).
generalize (permutation_map _ _ (sum_leaves f) _ _ H2); auto.
rewrite H4.
apply permutation_trans with (map (sum_leaves f) l2).
generalize
 (permutation_map _ _ (sum_leaves f) _ _ (permutation_sym _ _ _ H3));
 auto.
generalize (permutation_map _ _ (sum_leaves f) _ _ H9); auto.
change (ordered le (map (sum_leaves f) (t1 :: t2 :: l7))) in |- *.
apply ordered_map_inv; auto.
change (ordered le (map (sum_leaves f) (t3 :: t4 :: l8))) in |- *.
apply ordered_map_inv; auto.
Qed.

End OneStep.
Arguments one_step [A].