Huffman.Frequency

(* This program is free software; you can redistribute it and/or      *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1   *)
(* of the License, or (at your option) any later version.             *)
(*                                                                    *)
(* This program is distributed in the hope that it will be useful,    *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of     *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the      *)
(* GNU Lesser General Public License for more details.                *)
(*                                                                    *)
(* You should have received a copy of the GNU Lesser General Public   *)
(* License along with this program; if not, write to the Free         *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA                                                     *)

(***********************************************************************)
(*    Proof of Huffman algorithm: Frequency.v                          *)
(*                                                                     *)
(*    Frequency list from a message and some properties                *)
(*                                                                     *)
(*    Definitions: frequency_list, number_of_occurrences               *)
(*                                                                     *)
(*                                    Laurent.Thery@inria.fr (2003)    *)
(***********************************************************************)

From Huffman Require Import Aux.
Require Import List.
From Huffman Require Import UniqueKey.
From Huffman Require Import Permutation.

Section Frequency.
Variable A : Type.
Variable eqA_dec : forall a b : A, {a = b} + {a <> b}.

(* Create a list of a given length with a given element  *)
Fixpoint id_list (a : A) (n : nat) {struct n} : list A :=
  match n with
  | O => nil
  | S n1 => a :: id_list a n1
  end.

(* An element in a frequency list *)
Fixpoint add_frequency_list (a : A) (l : list (A * nat)) {struct l} :
 list (A * nat) :=
  match l with
  | nil => (a, 1) :: nil
  | (b, n) :: l1 =>
      match eqA_dec a b with
      | left _ => (a, S n) :: l1
      | right _ => (b, n) :: add_frequency_list a l1
      end
  end.

(* 
  Adding an element gives the same list upto permutation if
  the frequency list is developed
*)

Theorem add_frequency_list_perm :
 forall (a : A) l,
 permutation (a :: flat_map (fun p => id_list (fst p) (snd p)) l)
   (flat_map (fun p => id_list (fst p) (snd p)) (add_frequency_list a l)).
Proof using.
intros a l; generalize a; elim l; simpl in |- *; clear a l; auto.
intros (a, n) l H b.
case (eqA_dec b a); auto.
intros e; simpl in |- *; rewrite e; auto.
simpl in |- *.
intros e;
 apply
  permutation_trans
   with
     (id_list a n ++
      (b :: nil) ++ flat_map (fun p => id_list (fst p) (snd p)) l);
 [ idtac | simpl in |- *; auto ].
change
  (permutation
     ((b :: nil) ++
      id_list a n ++ flat_map (fun p => id_list (fst p) (snd p)) l)
     (id_list a n ++
      (b :: nil) ++ flat_map (fun p => id_list (fst p) (snd p)) l))
 in |- *.
repeat rewrite <- app_ass; auto.
Qed.

(* Inversion theorem *)
Theorem add_frequency_list_in_inv :
 forall (a1 a2 : A) (b1 : nat) l,
 In (a1, b1) (add_frequency_list a2 l) -> a1 = a2 \/ In (a1, b1) l.
Proof using.
intros a1 a2 b1 l; elim l; simpl in |- *; auto.
intros [H1| H1]; auto; injection H1; auto.
intros (a3, b3) l1 Rec; simpl in |- *; auto.
case (eqA_dec a2 a3); simpl in |- *; auto.
intros e H; cut (In (a1, b1) ((a2, S b3) :: l1)); auto.
simpl in |- *; intros [H1| H1]; auto.
injection H1; auto.
intuition.
Qed.

(* Adding an element does not change the unique key property *)
Theorem add_frequency_list_unique_key :
 forall (a : A) l, unique_key l -> unique_key (add_frequency_list a l).
Proof using.
intros a l; elim l; simpl in |- *; auto.
intros (a1, n1) l1 Rec H; case (eqA_dec a a1).
intros e; apply unique_key_perm with (l1 := (a, S n1) :: l1); auto.
apply unique_key_cons; auto.
intros b; red in |- *; intros H0; case (unique_key_in _ _ _ _ b _ H); auto.
rewrite <- e; auto.
apply unique_key_inv with (1 := H); auto.
intros n; apply unique_key_cons; auto.
intros b; red in |- *; intros H0;
 case add_frequency_list_in_inv with (1 := H0); auto.
intros H2; case (unique_key_in _ _ _ _ b _ H); auto.
apply Rec; apply unique_key_inv with (1 := H); auto.
Qed.

(* Adding an element that was not in the list gives a frequency of 1 *)
Theorem add_frequency_list_1 :
 forall a l,
 (forall ca, ~ In (a, ca) l) -> In (a, 1) (add_frequency_list a l).
Proof using.
intros a l; generalize a; elim l; clear a l; simpl in |- *; auto.
intros (a1, l1) l0 H a H0.
case (eqA_dec a a1); auto.
intros H1; case (H0 l1); left;
 apply f_equal2 with (f := pair (A:=A) (B:=nat)); auto.
intros n; apply in_cons; auto; apply H; auto.
intros ca; red in |- *; intros H1; case (H0 ca); auto.
Qed.

(* Adding an element increments the frequency *)
Theorem add_frequency_list_in :
 forall m a n,
 unique_key m -> In (a, n) m -> In (a, S n) (add_frequency_list a m).
Proof using.
intros m; elim m; clear m; simpl in |- *; auto.
intros (a1, l1) l Rec a n H H1; case (eqA_dec a a1); simpl in |- *; auto.
intros H2; case H1; auto.
intros H3; left; apply f_equal2 with (f := pair (A:=A) (B:=nat));
 injection H3; auto.
rewrite H2; intros H3; case unique_key_in with (1 := H) (b2 := n); auto.
intros n0; right; apply Rec.
apply unique_key_inv with (1 := H); auto.
case H1; auto.
intros H0; case n0; injection H0; auto.
Qed.

(* Adding an element just changes the frequency of this element *)
Theorem add_frequency_list_not_in :
 forall m a b n, a <> b -> In (a, n) m -> In (a, n) (add_frequency_list b m).
Proof using.
intros m; elim m; clear m; simpl in |- *; auto.
intros (a1, l1) l H a0 b n H0 [H1| H1]; case (eqA_dec b a1); simpl in |- *;
 auto.
intros H2; case H0; injection H1; auto.
intros; apply trans_equal with (2 := sym_equal H2); auto.
Qed.

(* Create a frequency list from a message *)
Fixpoint frequency_list (l : list A) : list (A * nat) :=
  match l with
  | nil => nil
  | a :: l1 => add_frequency_list a (frequency_list l1)
  end.

(* Keys of the frequency are in the original message *)
Theorem frequency_list_in :
 forall a n m, In (a, n) (frequency_list m) -> In a m.
Proof using.
intros a n m; generalize n; elim m; clear m n; simpl in |- *; auto.
intros a0 l H n H0; case add_frequency_list_in_inv with (1 := H0); auto.
intros H1; right; apply (H n); auto.
Qed.

(* Developing the frequency list gives a permutation of the initial message *)
Theorem frequency_list_perm :
 forall l : list A,
 permutation l
   (flat_map (fun p => id_list (fst p) (snd p)) (frequency_list l)).
Proof using.
intros l; elim l; simpl in |- *; auto.
intros a l0 H.
apply
 permutation_trans with (2 := add_frequency_list_perm a (frequency_list l0));
 auto.
Qed.

Theorem frequency_list_unique :
 forall l : list A, unique_key (frequency_list l).
Proof using.
intros l; elim l; simpl in |- *; auto.
intros a l0 H; apply add_frequency_list_unique_key; auto.
Qed.
Hint Resolve frequency_list_unique : core.

(* Elements of the message are keys of the frequency list *)
Theorem in_frequency_map :
 forall l a, In a l -> In a (map fst (frequency_list l)).
Proof using.
intros l; elim l; simpl in |- *; auto.
intros a l0 H a0 [H0| H0]; auto.
rewrite H0; elim (frequency_list l0); simpl in |- *; auto.
intros (a1, l1) l2; simpl in |- *; auto.
case (eqA_dec a0 a1); simpl in |- *; auto.
cut (In a0 (map (fst (A:=A) (B:=nat)) (frequency_list l0))); auto.
elim (frequency_list l0); simpl in |- *; auto.
intros (a1, l1) l2; simpl in |- *; auto.
case (eqA_dec a a1); simpl in |- *; auto.
intros e H1 [H2| H2]; auto; left; rewrite <- H2; auto.
intros e H1 [H2| H2]; auto.
Qed.
Hint Resolve in_frequency_map : core.

(* Keys of the frequency list are elements of the message *)
Theorem in_frequency_map_inv :
 forall l a, In a (map (fst (B:=_)) (frequency_list l)) -> In a l.
Proof using.
intros l a H; case in_map_inv with (1 := H); auto.
intros (a1, l1) (Hl1, Hl2); simpl in |- *.
rewrite Hl2; apply frequency_list_in with (1 := Hl1).
Qed.

(* Compute the number of occurrences of an element in a message *)
Fixpoint number_of_occurrences (a : A) (l : list A) {struct l} : nat :=
  match l with
  | nil => 0
  | b :: l1 =>
      match eqA_dec a b with
      | left _ => S (number_of_occurrences a l1)
      | right _ => number_of_occurrences a l1
      end
  end.

(* If an element is not in a message, its number is 0 *)
Theorem number_of_occurrences_O :
 forall a l, ~ In a l -> number_of_occurrences a l = 0.
Proof using.
intros a l; elim l; simpl in |- *; auto.
intros a0 l0 H H0; case (eqA_dec a a0); auto.
intros H1; case H0; auto.
Qed.

(* All the occurrences of an element can be gathered in the list *)
Theorem number_of_occurrences_permutation_ex :
 forall (m : list A) (a : A),
 exists m1 : list A,
   permutation m (id_list a (number_of_occurrences a m) ++ m1) /\ ~ In a m1.
Proof using.
intros m; elim m; simpl in |- *; auto.
intros a; exists (nil (A:=A)); split; auto with datatypes.
intros a l H a0.
case (eqA_dec a0 a); simpl in |- *; intros H1.
case (H a0); intros m1 (H2, H3).
exists m1; split; auto.
pattern a0 at 1 in |- *; rewrite H1; auto.
case (H a0); intros m1 (H2, H3).
exists (a :: m1); split; auto.
apply
 permutation_trans
  with ((a :: m1) ++ id_list a0 (number_of_occurrences a0 l));
 auto.
simpl in |- *; apply permutation_skip; auto.
apply permutation_trans with (1 := H2); auto.
simpl in |- *; Contradict H3; case H3; intros H4; auto; case H1; auto.
Qed.

(* Number of occurrences in an appended list is the sum of the occurrences *)
Theorem number_of_occurrences_app :
 forall l1 l2 a,
 number_of_occurrences a (l1 ++ l2) =
 number_of_occurrences a l1 + number_of_occurrences a l2.
Proof using.
intros l1; elim l1; simpl in |- *; auto.
intros a l H l2 a0; case (eqA_dec a0 a); intros H1; simpl in |- *; auto.
Qed.

(* Permutation preserves the number of occurrences *)
Theorem number_of_occurrences_permutation :
 forall l1 l2 a,
 permutation l1 l2 -> number_of_occurrences a l1 = number_of_occurrences a l2.
Proof using.
intros l1 l2 a H; generalize a; elim H; clear H a l1 l2; simpl in |- *; auto.
intros a L1 L2 H H0 a0; case (eqA_dec a a0); simpl in |- *; auto;
 case (eqA_dec a0 a); simpl in |- *; auto.
intros a b L a0; case (eqA_dec a0 a); simpl in |- *; auto;
 case (eqA_dec a0 b); simpl in |- *; auto.
intros L1 L2 L3 H H0 H1 H2 a; apply trans_equal with (1 := H0 a); auto.
Qed.

(* The frequency list contains the number of occurrences *)
Theorem frequency_number_of_occurrences :
 forall a m, In a m -> In (a, number_of_occurrences a m) (frequency_list m).
Proof using.
intros a m; generalize a; elim m; clear m a; simpl in |- *; auto.
intros a l H a0 H0; case (eqA_dec a0 a); simpl in |- *; auto.
intros e; case (In_dec eqA_dec a0 l).
intros H1; rewrite e; apply add_frequency_list_in; auto.
apply (H a); rewrite <- e; auto.
intros H1; rewrite number_of_occurrences_O; auto.
rewrite e; apply add_frequency_list_1.
intros ca; Contradict H1; auto.
rewrite e; apply frequency_list_in with (1 := H1).
intros H1; case H0; auto.
intros H2; case H1; auto.
intros H3; apply add_frequency_list_not_in; auto.
Qed.

End Frequency.
Arguments id_list [A].
Arguments add_frequency_list [A].
Arguments frequency_list [A].
Arguments number_of_occurrences [A].
Hint Resolve in_frequency_map : core.
Hint Resolve frequency_list_unique : core.